Beta
×

Welcome to the Slashdot Beta site -- learn more here. Use the link in the footer or click here to return to the Classic version of Slashdot.

Thank you!

Before you choose to head back to the Classic look of the site, we'd appreciate it if you share your thoughts on the Beta; your feedback is what drives our ongoing development.

Beta is different and we value you taking the time to try it out. Please take a look at the changes we've made in Beta and  learn more about it. Thanks for reading, and for making the site better!

100 Million-Core Supercomuters Coming by 2018

CWmike (1292728) writes | more than 4 years ago

Supercomputing 0

CWmike (1292728) writes "As amazing as today's supercomputing systems are, they remain primitive and current designs soak up too much power, space and money. And as big as they are today, supercomputers aren't big enough — a key topic for some of the estimated 11,000 people now gathering in Portland, Ore. for the 22nd annual supercomputing conference, SC09, will be the next performance goal: an exascale system. Today, supercomputers are well short of an exascale. The world's fastest system at Oak Ridge National Laboratory, according to the just released Top500 list, is a Cray XT5 system, which has 224,256 processing cores from six-core Opteron chips made by Advanced Micro Devices Inc. (AMD). The Jaguar is capable of a peak performance of 2.3 petaflops. But Jaguar's record is just a blip, a fleeting benchmark. The U.S. Department of Energy has already begun holding workshops on building a system that's 1,000 times more powerful — an exascale system, said Buddy Bland, project director at the Oak Ridge Leadership Computing Facility that includes Jaguar. The exascale systems will be needed for high-resolution climate models, bio energy products and smart grid development as well as fusion energy design. The latter project is now under way in France: the International Thermonuclear Experimental Reactor, which the U.S. is co-developing. They're expected to arrive in 2018 — in line with Moore's Law — which helps to explain the roughly 10-year development period. But the problems involved in reaching exaflop scale go well beyond Moore's Law..."
Link to Original Source

Sorry! There are no comments related to the filter you selected.

Check for New Comments
Slashdot Login

Need an Account?

Forgot your password?