Beta
×

Welcome to the Slashdot Beta site -- learn more here. Use the link in the footer or click here to return to the Classic version of Slashdot.

Thank you!

Before you choose to head back to the Classic look of the site, we'd appreciate it if you share your thoughts on the Beta; your feedback is what drives our ongoing development.

Beta is different and we value you taking the time to try it out. Please take a look at the changes we've made in Beta and  learn more about it. Thanks for reading, and for making the site better!

Nanoscale nonlinear light source

Freddybear (1805256) writes | about 3 years ago

0

Freddybear (1805256) writes ""Not long after the development of the first laser in 1960 scientists discovered that shining a beam through certain crystals produced light of a different color; more specifically, it produced light of exactly twice the frequency of the original. The phenomenon was dubbed second harmonic generation

The green laser pointers in use today to illustrate presentations are based on this science, but producing such a beautiful emerald beam is no easy feat. The green light begins as an infrared ray that must be first processed through a crystal, various lenses and other optical elements before it can illuminate that PowerPoint on the screen before you.

It was later discovered that applying an electrical field to some crystals produced a similar, though weaker, beam of light. This second discovery, known as EFISH – for electric-field-induced second harmonic light generation – has amounted mostly to an interesting bit of scientific knowledge and little more. EFISH devices are big, demanding high-powered lasers, large crystals and thousands of volts of electricity to produce the effect. As a result, they are impractical for all but a few applications.

In a paper published today in Science, engineers from Stanford have demonstrated a new device that shrinks EFISH devices by orders of magnitude to the nanoscale. The result is an ultra-compact light source with both optical and electrical functions. Research implications for the device range from a better understanding of fundamental science to improved data communications.""

Link to Original Source

cancel ×

0 comments

Sorry! There are no comments related to the filter you selected.

Check for New Comments
Slashdot Login

Need an Account?

Forgot your password?