Beta
×

Welcome to the Slashdot Beta site -- learn more here. Use the link in the footer or click here to return to the Classic version of Slashdot.

Thank you!

Before you choose to head back to the Classic look of the site, we'd appreciate it if you share your thoughts on the Beta; your feedback is what drives our ongoing development.

Beta is different and we value you taking the time to try it out. Please take a look at the changes we've made in Beta and  learn more about it. Thanks for reading, and for making the site better!

How Many People Does It Take to Colonize Another Star System?

Hugh Pickens DOT Com (2995471) writes | about 5 months ago

0

Hugh Pickens DOT Com (2995471) writes "The nearest star systems—such as our nearest neighbor, Proxima Centauri, which is 4.2 light-years from home—are so far that reaching them would require a generational starship. Entire generations of people would be born, live, and die before the ship reached its destination. This brings up the question of how many people you need to send on a hypothetical interstellar mission to sustain sufficient genetic diversity. Now Sarah Fecht writes that anthropologist Cameron Smith has calculated how many people would be required to maintain genetic diversity and secure the success of the endeavor. William Gardner-O'Kearney helped Smith build the MATLAB simulations to calculate how many different scenarios would play out during interstellar travel and ran some simulations specially to show why the success of an interstellar mission depends crucially on the starting population size. Gardner-O'Kearny calculated each population's possible trajectory over 300 years, or 30 generations. Because there are a lot of random variables to consider, he calculated the trajectory of each population 10 times, then averaged the results.

A population of 150 people, proposed by John Moore in 2002, is not nearly high enough to maintain genetic variation. Over many generations, inbreeding leads to the loss of more than 80 percent of the original diversity found within the hypothetical gene. A population of 500 people would not be sufficient either, Smith says. "Five hundred people picked at random today from the human population would not probably represent all of human genetic diversity . . . If you're going to seed a planet for its entire future, you want to have as much genetic diversity as possible, because that diversity is your insurance policy for adaptation to new conditions." A starting population of 40,000 people maintains 100 percent of its variation, while the 10,000-person scenario stays relatively stable too. So, Smith concludes that a number between 10,000 and 40,000 is a pretty safe bet when it comes to preserving genetic variation. Luckily, tens of thousands of pioneers wouldn't have to be housed all in one starship. Spreading people out among multiple ships also spreads out the risk. Modular ships could dock together for trade and social gatherings, but travel separately so that disaster for one wouldn't spell disaster for all. "With 10,000," Smith says, "you can set off with good amount of human genetic diversity, survive even a bad disease sweep, and arrive in numbers, perhaps, and diversity sufficient to make a good go at Humanity 2.0.""

cancel ×

0 comments

Sorry! There are no comments related to the filter you selected.

Check for New Comments
Slashdot Login

Need an Account?

Forgot your password?

Submission Text Formatting Tips

We support a small subset of HTML, namely these tags:

  • b
  • i
  • p
  • br
  • a
  • ol
  • ul
  • li
  • dl
  • dt
  • dd
  • em
  • strong
  • tt
  • blockquote
  • div
  • quote
  • ecode

"ecode" can be used for code snippets, for example:

<ecode>    while(1) { do_something(); } </ecode>